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Abstract The cohesion of solid thorium dioxide is calculated within the fully ionic description. 
calculating exactly, after generating the electronic wavefunctions of the ions, those parts of each 
inter-ionic potential that do not arise from e l e m n  correlation. The wavefunctions of the anions 
are modified by a potential representing the environment in the crystal. This gives rise to a 
substantial contribution to the laitice e n w .  Density-functional theory is used to evaluate the 
contributions from electron correlation. The dispersion term is evaluated separately. The lattice 
energy, lattice parameter and bulk compnssibilii calculated here are in excellent agreement 
with experiment supponing the ionic description of thorium dioxide. 

1. Introduction 

Interest in thorium dioxide is not confined to its use as a nuclear material. It is a solid-state 
electrolyte and is traditionally used in fluorescent tubes. It is the simplest of the actinide, 
dioxides to study since it does not show significant non-stoichiometry. The defect smcture 
bas been calculated by Colboum and Mackrodt (1983) using pair potentials obtained from 
electron-gas calculations and modified to reproduce the lattice parameter. These calculations 
support the idea that the dominant defects in thoria are Frenkel pairs. However, the energies 
they obtain for the defect processes are much larger than those obtained from experimental 
diffusion or creep studies. This is particularly true for the cation processes where the 
discrepancy is approximately a factor of two. This problem occurs in the other fluorite 
oxides that have been studied (see, for example, Jackson et a1 (1986)). These problems 
suggest that it is worth studying the cohesive energy of thoria in some detail to see whether 
the pair potential approximation used in all the simulations to date is valid. 

2. Method 

The details of the calculation may be found in the papers of Wood and Pyper (1986) and 
Pyper (1986). An extensive review has also been given by Pyper (1991) and updated in 
some respects by a later paper (Pyper 1994a). It is therefore necessary only to give a brief 
review of the method here. The object is to calculate the cohesive energy of the oxide using 
 relativistic^ Hattree-Fock methods (together with corrections for correlation and dispersion) 
but within the spirit of the ionic model. 

We first require a definition of ionicity suitable for calculation. A general discussion of 
the meaning of ionicity has been given by Catlow and Stoneham (1983). who point out the 
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difficulties and contradictions in the literature. For the present purposes, we define an ionic 
crystal as composed of ions which have electronic charge distributions that are optimal for 
the crystal subject to two constraints. First, the ions are spherically symmetric and second, 
they contain a fixed, integral number of electrons. In particular, the oxide ion is 02-. 
containing ten electrons. 

The above definition of ionicity allows us to regard the crystal as being assembled in 
two stages. In the first stage, each ion is modified to a state which is optimal for the crystal 
environment such that, when in the second stage the ions are assembled to form the crystal, 
the total crystal energy with respect to the original free ions is minimized. The energy 
required to convert free ions to in-crystal ions is called the rearrangement energy, E,(Ri) 
where R; are the parameters defining the local environment. For a simple shmcture like the 
fluorite structure of thoria, this parameter list reduces to one, the lattice parameter R (here 
taken to be the cation-anion separation). The rearrangement energy for one ion of type X 
may therefore be written as 

J H Harding et a1 

E$(R) = Ex(R) - E x  (1) 

where Ex(R)  is the energy of the optimized in-crystal ion wavefunction evaluated using 
the freeion Hamiltonian and EX is the energy of the free ion. In the case of the oxide ion, 
matters are somewhat more complex because the free 0’- ion is unstable. In this case, 
EX is interpreted as the energy of an 0- ion plus a stationary, isolated electron. We only 
consider the anion rearrangement energy: the electrons of the The ion are tightly bound 
and are not significantly affected by the environment. The second stage of the calculation 
consists of computing the total energy of interaction between al l  the ions in their optimal 
in-crystal states when these are assembled to form the crystal with cation-anion spacing R. 
Thus the crystal cohesive energy UL(R) measured with respect to the original free ions is 
given by adding this total interaction energy to the total rearrangement energy. Both the 
rearrangement and interaction energy components of U&?) can be written as the sum of 
a Hamee-Fock part, to be denoted by the superscript zero, plus corrections arising from 
electon correlation. 

2.1. The Hartree-Fock calculation 

2.1.1. Basic theory. The wavefunctions €or both the free Th4+ ion and the in-crystal 0’- 
ions were computed in the relativistic Duac-Fock orbital approximation by using the Oxford 
Duac-Fock program (Grant era1 1980). The computation of the 0’- wavefunctions for one 
anion ( U )  requires that a term F(ra, R)  describing the interaction between an anion electron 
and all the other ions (b # a) in the crystal is added to the Dirac-Fock Hamiltonian of anion 
a. This term depends both on R and on the distance r, of the electron from the nucleus of 
a. This environmental potential F(ra, R )  contains two terms, the Madelung well and one 
describing the effect of orthogonalizing the anion wavefunctions to the rest of the lattice. 
We discuss this in more detail later. 

Once we have obtained the ion wavefunctions, we use the formalism developed 
by Abarenkov and Antonova (1970) to calculate the crystal energy. They wrote the 
wavefunction of an ionic crystal containing N ions and NT electrons as an antisymmetrized 
product of the wavefunctions of the individual ions thus: 
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where the label a distinguishes different ions. N,, is the label of the electron appearing 
first in the wavefunction of ion a, which has No electrons. S is the normalisation constant 
and A the antisymmetrizer. When this wavefunction is used to calculate the energy using 
the standard Hamiltonian, Abarenkov and Antonova showed that it is possible to write the 
crystal energy as 

N N N 
E : r ( R ) = C E % ? ) f x  v:b(&bR) f 1 V&(XabR,XbcR,xmR)+ "'. (3) 

Here E:(R) is the energy that a single ion a would have when isolated if it still 
retained its optimal in-crystal wavefunction and is thus the DuaoFock part of E@-(R) 

inter-ionic potentials and x,,b is the geometrical factor expressing the distance between ions 
a and b in terms of the cation-anion distance R. From here on we ignore all terms in the 
expansion beyond the pair potentials. It is useful to decompose the pair interaction between 
the ions a and b into the purely coulombic form it would have if the overlap between the 
wavefunctions of the two ions were negligible plus a remainder V;,(x,bR) which is of 
short range as denoted by the s subscript. Thus 

0 4  o<b o<b<c 

in equation (1). v:b(XabR) and V:b,(X,bR, XbcR. X&) are the Usual pait and threebody 

v:b(xabR) = y!b(xabR) f ZaZb/(XabR) (4) 

where Z. is the net charge of ion a. The purely coulombic terms resulting from the use 
of (4) in (3) constitute a standard Madelung sum whilst the only non-negligible short-range 
terms are those VgA(R)  between a cation and its eight nearest anions, those V&(xuR)  
between an anion and its six closest anion neighbours and those V&(xccR) between a 
cation and its twelve closest cation neighbours. After using these results the uncorrelated 
contribution U t ( R )  to the crystal cohesion derived by subtracting from (3) the energy of 
free 0- ions becomes 

@ ( R )  = - M / R  +2EL(R) + 8VzA(R)  + ~ V ~ A ( X A A R )  + 6V&(xccR). (5) 

Here M is the appropriate Madelung constant whilst E:(R) is the prediction of the Dirac- 
Fock atomic orbital model for the rearrangement energy of one ion. 

Given suitable wavefunctions, all the terms in (5) can be evaluated. The rearrangement 
energy is computed using the energy-analysis package associated with the Oxford Drac- 
Fock program. The pair potentials can be calculated using RIP (relativistic integrals 
program), a computer program developed by Wood and Pyper (1986). This takes the Dirac- 
Fock orbitals computed for the individual ions and calculates the interaction using the full 
Dirac equation thereby accounting for the overwhelming majority of all the relativistic 
contributions to U t ( R ) .  This procedure neglects only purely quantum electrodynamic 
effects (Bethe and Salpeter 1957) and the inter-electronic Breit interaction (Breit 1929, 1930, 
1932, Mittleman 1971, 1972) originating from the exchange of virtual transverse photons. 
Although both the Breit interaction and quantum electrodynamic effects make significant 
contributions to the binding energies of the innermost core electrons (Grant 1970), these 
contributions cancel in the evaluation of the interaction energy because the ion core orbitals 
remain essentially unchanged on entering the crystal. This then shows that the Breit and 
quantum electrodynamic contributions to U f ( R )  can be safely neglected because these terms 
make only very small contributions to the energies of valence electrons (Pyper and Marketos 
1981). However, the relativistic effects described by Dirac-Fock theory have been shown 
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(Rose et a1 1978) to influence greatly the behaviour of even the valence electrons in atoms 
heavier than those of the third transition series. The mean radii and binding energies of 
valence orbitals in such heavy atoms can be changed by relativity by as much as 30% . 
For Tho2 therefore it is essential to consider such effects by using relativistic Dirac-Fock 
rather than standard non-relativistic Hartree-Fock theory. The role played by relativity in 
the cohesion of a solid containing heavy ions has been studied explicitly (Pyper et al 1987) 
for the case of cubic PbF2. Full details of the RIP program are given in Wood and Pyper 
(1986). 

2.1.2. The environmental potential. We require the wavefunctions of the anions in the 
crystal environment. To get these, we require a method of estimating the effect of the 
environment on the anion. We assume that this can be described by a local potential. 
Possible forms of this potential have recently been discussed in detail by Pyper (1994a). 
The electrostatic term is, in principle, straightforward. Here the only refinement is to note 
that we do not require a detailed description of its behaviour beyond the nearest neighbours 
and it is therefore convenient to multiply it by a smoothing function. The difficulty lies in 
obtaining a local potential that describes the orthogonalization term. Pypr  has compared 
the various functions suggested in the literature. Here we use a function having the general 
form 

J H Harding et a1 

This is very similar to the ODMFS (optimized with density Madelung Fermi smoothed 
model) discussed by Pyper (1994a). The first term represents the electrostatic term; @ / R  
being the Madelung potential at the anion site. The smoothing part contains two parameters, 
ro and g. ro is fixed by requiring that the smoothed electrostatic term reproduces the exact 
Madelung result at the distance where the latter has the value -@/2R. g is fixed by 
requiring that the smoothed expression also reproduces the exact result half-way between 
ro and R. The second term represents the orthogonalization to the nearest-neighbour ions. 
The b sum is over the four cations adjacent to anion a whilst the i sum is over all the 
occupied orbitals of cation b. The quantity Pib(T) is the density at position T generated by 
an electron occupying orbital i of ion b. For each ion b, this term is then expanded as a 
series of spherical harmonics centred 00 nucleus a. We take only the zero-order (spherically 
symmetric) term of this expansion. This is denoted by the superscript zero. Only this term 
needs to be considered if one makes the usual demand that the atomic orbitals have the 
standard angular symmebies of atomic orbitals. The quantities A and k are variational 
parameters to be determined by minimizing the cohesive energy with respect to them for a 
given lattice parameter R. 

2.2. The correlation and dispersion terms 

The HartreeFock calculation discussed above omits the effects of electron correlation. Here 
we estimate these terms and add them to the crystal binding energy. There are two sources 
of correlation to consider: the intra-ionic correlation and the inter-ionic correlation. The 
assumption that the cations are unaffected by the crystal environment causes any intra-ionic 
correlation in the cations to cancel out of the cohesive energy. However, this is not the case 
for the anions, which are profoundly modified by their environment. We must therefore 
calculate the difference in the correlation energy between the free 0- ion and the 0'- in 
various environments. The only practical way to estimate correlation effects for this problem 
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is to use density-functional theory. A common approximation is to assume that the electron 
density varies sufficiently slowly that at each point the functional may be assumed to be 
that of a non-relativistic uniform electron gas with the same density. We use the standard 
expression for the correlation term in the electron-gas approximation and incorporate the 
Cowan correction (Cowan 1967) to remove electron self-correlation. The correlation energy 
E:, of species a (a = 6ee 0- or 0'- in crystal)  is^ 

where PT. (T)  is the Dim-Fock prediction for the total electron density of species a and the 
i summation is over all orbitals occupied in species a generating electron densities pin(?-). 
The functional chosen is 

(8) -0.4388-' + 1.325p-3" - 1.47p-' - 0.4p-5'2 p 2 10 
F"[p(r)l = -0.06156+0.01898lnp 0.7 < p < 10 (9) 1 0.03111nB -0.046+0.009~in@ -0.OIp B 0.7 (10) 

where p 3  = 3/[4rrp(r)]. This is the Gordon-Kim functional (Gordon and Kim 1972). 
There are many others, but the differences between them are not great. 

The use of densities pia(r) derived from relativistic orbitals with functionals such as 
(8x10)  based on non-relativistic theory might at first sight seem to be slightly inconsistent. 
However, it has been shown (F'yper et al 1977) for the interaction of two mercury atoms 
that the density-functional predictions of the kinetic-energy contribution to the interatomic 
potential remain essentially unchanged on replacing the non-relativistic kinetic-energy 
functional by the corresponding relativistic one. Since relativity would be expected to 
modify the kinetic energy more than the correlation energy, it follows, for the electron 
densities relevant to the interaction of ions in solids, that the correlation energies predicted 
using the relation (7) would remain essentially unchanged on replacing (8x10)  by the 
corresponding functional derived from relativistic theory. However, it was also found (F'yper 
et a1 1977) that the density functional predictions of the interaction energy were greatly 
changed on replacing the non-relativistic mercUj-atom electron density by the relativistic 
one. This strongly suggests that most of the relativistic modifications of the correlation 
energy have been included in the present calculations simply by using the relativistic rather 
than the non-relativistic densities in (7). 

Pyper (1994a) has shown that the use of (7)-(10) gives poor results for intra-ionic 
correlation. However, he has shown that it is possible to construct a systematic scheme 
to correct the poor density-functional predictions of electron correlation contributions to 
ionization potentials by introducing correction functions Acm(E) derived from experimental 
data and dependent on a parameter 5 characterizing the electronic structure of the species 
whose ionization is being considered. The correlation correction to the rearrangement energy 
is thus evaluated from 

E,"(R) = Acm(C)[E$F(R) - E:?] (1 1) 

where E;: and E$! are the predictions of (7) for respectively the correlation energy of a 
free 0- ion and that of an 02- ion in the crystal with closest cation-anion separation R. 
For the neon iso-electronic sequence AW&) was shown to be given by 

A,(e) = I.OSS+O.292f +0.1271513'241. (12) 
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Application of this relation requires the a value for an in-crystal 0% ion. For such an ion 
it was shown that e could be deduced from the polarizability (Y of such an ion through 

J H Harding et a1 

a-’ = 0.092754 - 0.005 797a4. (13) 

A recent re-examination (Fowler et af 1994) of experimental and theoretical data for 
refractive indicies and ionic polarizabilities of solid quadrivalent oxides showed the 
polarizability of an 0’- ion in Tho’ to be 15.349 au from which g is found to be 
1.477 corresponding to an Acorn(.$) value of 1.936. The required correlation contribution 
EZ*(R) to the 02- ion rearrangement energy can now be computed from (11). The total 
rearrangement energy E=(R) of one in-crystal 0’- ion is given as the sum of the Dirac-Fock 
and correlation contributions by 

E,@) = E:(R) + E,”(R). (14) 

The inter-ionic electron correlation consists of two contributions, the first not involving 
the exchange of electrons between the ions whilst the second originates from such exchange. 
The first contribution is traditionally called the dispersion energy and is of long range in that 
it does not depend on the overlap between the wavefunctions of the interacting ions and does 
not therefore vanish when this overlap is negligible. The second contribution being of short 
range and vanishing for negligible ion wavefunction overlap is conventionally regarded as 
a correlation correction to the uncorrelated short-range interaction v$b(&bR). The total 
short-range interaction between the hns a and b is thus given as the sum 

Vsob(XabR) = V$b(&bR) + y?t(&bR) (15) 

where Vs?:(xobR) is the exchange-dependent correlation term. Density-functional theory 
provides the only currently feasible way of evaluating the V&Y(*,bR). Here we use the 
functionals (8-10) so that the method becomes identical to that used by Gordon and Kim 
(1972). Since the functionals (8-10) yield the entire correlation energy of a uniform 
electron gas and not just the exchangedependent contribution, there would be a problem 
of double counting if the total correlation energy of such a gas were to be calculated by 
adding an independently evaluated dispersion contribution to the prediction derived from 
the functionals (Sj(l0). The major portion of the density dependence of the correlation 
energy of a uniform electron gas arises from the electron-electron interactions occurring 
over short distances since the long-range correlation effects are very nearly independent 
of the density (Raimes 1972, Rae 1975). Hence if the difference between the correlation 
energy of a pair of interacting ions and the sum of the correlation energies of the non- 
interacting ions is evaluated using the local density approximation (7) in conjunction with 
the functionals (SHlO), the contribution from the long-range correlations will cancel almost 
exactly. Hence the dispersive attraction between a pair of ions is almost completely 
missed by such a calculation of the correlation energy because these attractions originate 
almost entirely from electron correlations of long range. Since it is only the short- 
range correlations in a uniform electron gas which are significantly density dependent, 
correlation conhihutions to interaction energies evaluated using (7x10) will arise almost 
entirely from short-rangecorrelation effects which play almost no role in the dispersive 
interactions. This shows that the local-density approximation (7)-(10) yields only the short- 
range-correlation terms vz:(&bR) and hence that the total correlation energy is obtained 
only after adding separately evaluated dispersive attractions. The studies of both the inert gas 
dimers (Clugston and Pyper 1979) and the cohesion of ionic crystals (Pyper 1986) provide 
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strong confirmatory numerical evidence that the dispersive attractions are physically quite 
distinct from the localdensity approximation (7)-(10) for the correlation energy so that any 
double counting introduced by including both these correlation terms is minimal. Since 
the dispersion energy is often 5% of the total cohesion it cannot be omitted whilst the 
short-range correlation energy is also too large to be dismissed. 

The dispersion energy Udsp(R) of the crystal is given by 

N m  

o<b n=3 
hi&) = - ccXg(&bR)c</ (x .bR)2n (16) 

where the C g  are the dispersion coefficients and the &(x.bR) are dispersion damping 
functions. These functions are unity at longer interionic separations where ion-wavefunction 
overlap is negligible but are reduced at smaller xobR thus taking account of the effect 
of the overlap of the wavefunctions and suppressing the singularities in the undamped 
expression as x,bR tends to zero. The complex expressions for the x<(xabR) were derived 
by Jacobi and Czanak (1975) and by Pyper (1986). They are discussed in Pyper (1991, 
1994a). For the closest cation-anion, anion-anion and cation-cation pairs it is essential to 
take account of the damping of the dispersion interactions (Fyper 1986) because U&p(R) 
values derived neglecting this damping are very significantly too large leading to appreciable 
overestimation of the crystal cohesion. Only the first two terms of the n summation in (16) 
make a significant contribution to the cohesive energy. We obtain values for the Czb 
coefficients using the Slater-Kirkwood (1931) approximation and the Cib coefficients using 
the Starkschali-Gordon (1972) formulae. A discussion of how to obtain both these numbers 
(as well as the dispersion damping parameters on which the &(X,,bR) depend) is  found in 
Fowler etal (1994). The final expression used to predict the total crystal cohesive energy 
UL(R) is given by adding to the uncorrelated prediction Ut(R) of equation (5) the correlation 
contribution (11) to the rearrangement energy, the short-range two-body correlation terms 
entering (15) and the dispersion energy (16). The result is 

ULW) = -M/R + 2 M R )  + 8Vsca(R) + 6Vsaa(xaaR) + 6Kcc(xccR) + (17) 

3. Results 

We begin with the results for the oxide rearrangement energy shown in table 1. There are a 
number of points to note. The most important is that the term is large and changes markedly 
as the lattice expands. This is the case for all the other oxides that have been studied (MgO 
and CaO by Pyper (1994a) and also U02 (Hardiug et ai 1994; preliminaty results derived 
using the methods of Pyper (1994a, b) are quoted in Lindan (1993)). Therefore the attempts 
that have been made in the older literature to define a unique value for the second ionization 
potential for the oxide ion are pointless. There is no such number. This observation is 
reinforced by the result that the rearrangement energy even varies between different crystals 
at their respective equilibrium geometries. Thus our value of 1242 kJ mol-' for R = 4.5 
bok  in Tho2 is significantly larger than those of 1026 kJ mol-' and 1039 kl mol-' found 
for E,(3.981) and E,(4.544) for MgO and CaO at their respective equilibrium geometries 
(Pyper 1994a). All three of these rearrangement energies are considerably larger than the 
values (between 751 kJ mol-' and 885 kJ mol-') which have been deduced (Moms 1957, 
Huggins and Sakamoto 1957) by comparing semi-empirical calculations of oxide lattice 
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energies with experimental data. It is beyond the scope of this paper to discuss either the 
reasons for these differences or the significance of the semi-empirical values, topics to be 
addressed elsewhere. Also, table 1 shows that the variation in the correlation contribution 
to the rearrangement energy is large too; this quantity cannot be estimated accurately from 
a HartreeFock calculation alone. Finally, the rearrangement energy is intrinsically a many- 
body term. However, it is not an explicit term in the sense of the *body terms in 
equation (3) and certainly not of the bond-bending type. 

Pyper (1991) refers to this type of term as an 'implicit' many-body term. This point has 
been made, in effect, by previous authors. Boyer et a1 (1985) refer to this effect as their 
'potential-breathing' model. It is worth, however, stressing that there is no analogy here 
with the terms used to model directional bonds; the analogy is, if anywhere, with the kinds 
of term found in embedded-atom or Finnis-Sinclair models (Finnis and Sinclair 1984). 

J H Harding et a1 

Table 1. Values ofthe parameters A and k of the environmental potential (see equalion (6)) and 
rearrangement energies for the oxide ion in thoria 

RWW A k E ~ [ o ~ - I  (Hame) E,[@-] (H-) 
3.5 11.0 1.48 1.157344 0.985288 
4.0 13.05 1.43 0.796463 0.648361 
4.25 14.0 1.42 0.687989 0.549592 
4.5 11.1 1.25 0.603403 0.472924 
4.75 11.5 1.25 0.544227 0.421 355 
5.0 10.7 1.19 0.499439 0.382903 
5.5 7.0 0.92 0.439300 0.331 823 

Table 2 shows both the uncorrelated V&(xxyR) and short-range-correlation 
V:$$(xxyR) conhibutions to the short-range parts of the pair potentials. The contribu- 
tion V$?(xxyR) of dispersion to the interaction of one ion of type X with one of its 
nearest neighbours of type Y in the crystal with geometq defined by R is given by 

v : ; ~ ( x ~ ~ R )  = - X ~ ~ ~ ~ X ~ ~ R ) C , X Y / ( X ~ R ) ~  - x S X ~ ( X ~ R ) C S X ~ / ( X ~ ~ R ) ~  (18) 

These quantities are also reported in table 2. It is sometimes useful to work with the 
total non-point-coulombic interactions, that V$(xxyR) for the pair of ions X and Y being 
defined as 

V$(xxyR) = V,xy(xxyR) + V:;'(x,R). (19) 
It is Seen that the correlation (and dispersion) terms make significant conhibutions to the 
final non-point-coulombic interactions. The total crystal cohesion &(R) is not just the 
Madelung term and twice the rearrangement energy plus the sum of non-point-coulombic 
interactions 

8Vzt+-0z-(R) + 6 V : ! z - 0 2 - ( ~ ~ * - - ~ - R )  + 6 V . ~ - n 4 + ( ~ m ~ + - n + R )  

because the contributions from the dispersive attractions between more distant pairs of 
ions cannot be neglected. The separations ( X ~ ~ R )  entering these terms are, however, 
sufficiently large that all the functions X ~ ( X & ? )  damping these more distant attractions are 
unity. The full total crystal cohesions UL(R) evaluated from (17) are reported in table 3. 
Predictions for the equilibrium lattice parameter, Re, the lattice energy, -UL(&), and the 
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XAA = 2/43, 
Table 2 Pair potentials for Tho2 (for function definitions see the text). Note that ICC = 

R V&++-@-(R) V Z - 0 . -  (RI e+-@. ( R )  
(bob) w-) (Hameel (Harrree) 

3.5 0.302035 -0.006826 -0.048071 
4.0 0.146648 -0.004582 -0.024605 
4.25 0.103822 -0.003620 -0.017620 
4.5 0.076205 -0.002950 -0.012674 
4.75 0,055496 -0.002422 -0.009 176 
5.0 0.041 124 -0.001993 -0.006699 
5 5  0.023512 -0.001340 -0.003 676 

R v $ . _ ~ - ( x M R )  
(bok) (Hark=) 

3.5 0.024286 
4.0 0.011 144 
4.B 0.007509 
4.5 0.005400 
4.75 0.003586 
5.0 0.002399 
5.5 0.001 166 

V@--@.(XMR) mm V$?_,(x-R) 

( H e )  (Hamee) 

-0.001 233 -0.023077 
-0.001066 -0.012168 
-0.OCO999 -0.008 823 
-0.000949 -0.006415 
-0.OCO900 -0.004688 
-0.000853 -0.003452 
-0.000739 -0.001 921 

R V&,e-* (XCT R )  Vg:+-md+ (XccR) 
(bok) (H-) (Ham=) 
3.5 0.008328 -0.000619 
4.0 -0.000 167 -0.000 168 
4.25 -0.001007 -0.OCOO84 
4.5 -0.001363 -0.000040 
4.75 -0.001500 -0.000018 
5.0 -0.001493 -0.OCOoo8 
5.5 -0.001238 -0.000002 

“’P m e - m d + ( ~ ~ ~ R )  

(Hartred 

-0.002360 
-0.000980 
-0.OCO659 
-0.WO456 
-0.000322 
-0.000232 
-0.OCO 127 

Table 3. Cohesive energy UL(R) computed f” equation (17) as a function of lattice parameter. 

R @OW UL(R) W e )  
3.5 - 1.886 924 
4.0 -2.868452 
4.25 -3.037932 
4 5  -3.092930 
4.75 -3.087682 

5.5 -2.876231 
5.0 -3.~8700 

bulk compressibility were derived from these results by fitting them to a seven-term function 
of the type devised by Simons et a1 (1973). We thereby obtain the equilibrium lattice 
parameter as 4.593 bohr (compared with an experimental value of 4.582 bohr (Wyckoff 
1963)). 

Before we can compare our computed lattice energy with experiment, an experimental 
value must be derived from a Born4aber cycle. The cohesive energies calculated in table 3 
are with respect to Th*, 0- and free, stationary electrons whereas the experimentally 
available quantity is the heat of formation of solid Th@ from thorium metal and gaseous 
oxygen. All the quantities needed to derive the experimental lattice energy are available, 
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being reported in table 4, with the exception of the third and fourth ionization potentials 
of thorium. These latter had therefore to be derived from atomic relativistic DiraeFock 
calculations. The results of such calculations perfomed with the Oxford Duac-Fock 
program (Grant et al 1980) for neutral thorium and its first four ions are reported in table 5 
along with the ionization potentials predicted as the appmpriate differences of the total 
Dm-Fock energies. Comparison of the results with experimental ionization potentials 
(known only for neutral thorium and Th+) suggests that electron-correlation effects, which 
are not included in the Diac-Fock calculations, increase each ionization potential by only 
about 0.5 eV. The best current estimates (table 4) of the thiid and fourth Th ionization 
potentials are therefore given by adding 0.5 eV to each of the Dirac-Fock predictions. 
The data of table 4 yield an experimental value of 8100 kT mol-' for the lattice energy, 
compared with the calculated value of 8130 kJ mol-'. Considering the uncertainties in both 
experimental and calculated quantities, such agreement is remarkably good. 

J H Harding et a1 

lsble 4. The lattice energy of thoria 

PIOC%W Value Reference 

Sublimation energy of thorium 
Dissociation energy of  oxygen 
Electron affinity oxygen atom 
First ionization potential of thorium 
Second ionization potential of thorium 
Third ionization potential of thorium 
Founh ionization pMenti.4 of thorium 
Enthalpy of formation of thoria 

lattice energy (experiment) 
Lattice e n w  (theory) 

598 kJ mol-' 
41 260 cm-' 

-1.461 121 5 ev 
6.08 eV 

11.5 eV 
18.11 eV 
27.21 eV 

-292.01 kcal mo1-I 

8100 W mol-' 
8130 W mo1-I 

Katz et al (1986) 
Chase et ol (1985) 
Chase era1 (1985) 
Hildebrand et a1 (1985) 
Hildebrand et nl (1985) 
This work (calculation) 
This work (calculation) 
Wagman er al (1981) 

Table 5. Dirac-Fc€k predictions of thorium ionization potentials. 

Emin Calculated IP Experimental e 
Species T y p e o f c a l ~ . ~  Wartree) (eV) (ev) 
Th 6d2 79 (3 CSF) -26524.81 1974 5.714 6.08 I O.lZb 

3 = 2 ( A L )  
Th+ d 7S2 (1 CSF) -26524.601977 11.083 11.9iO.P 

1 l . f  
Th" 5f 6d (4 CSF) -26524.194689 17.606 

Th3+ 5 i ( l  CSF) -26573547681 26.710 

Th4+ -26522565093 

a AL = single manifold average level calculation and CSF = relativistic configuration state function 
(see Grant et nl 1976). 

J=4(AL) 

From Hildebrand et a/ (1985). 
From Katz et a/ (1986). 

Finally, we can compare the bulk moduli. Here we calculate a value of 17.5 x 1O'O 
N m-' compared with the experimental value of 19.3 x 10" N m-' (Macedo et af 1964). 
Again, this shows that the calculation performs well. 
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4. Conclusions 

We have shown that thorium dioxide may be described by an (appropriately defined) ionic 
model. The interionic potentials have been calculated using the RIP program and shown to 
give the cohesive energy, lattice parameter and bulk modulus in excellent agreement with 
experiment. The calculations have shown the importance of the self-energy of the oxygen 
ion, and in particular its strong variation with the local environment. Thii effect is stronger 
than in the oxides with the rock-salt structure where it had been reported before. This is a 
many-body term (although not of the bond-bending type). Future potential models should 
take this effect into account. 
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